
art news
3 March 2020
art stakeholders meeting

• Same product stack as art 3.04
• Still supports SLF6 and macOS Mojave (SIP disabled)
• Minor bug fixes
• (Nearly) decouples service interface scope from implementation scope
– LEGACY service interfaces must have LEGACY implementations
– SHARED service interfaces may have either SHARED or LEGACY implementations

• One implementation’s thread-safety has no bearing on another’s

art 3.05 (release sometime today)

12/17/19 Kyle J. Knoepfel | LArSoft coordination meeting2

MyInterface (SHARED)

MySharedImpl (SHARED)

MyLegacyImpl (LEGACY)

• Until now, we have not provided a dedicated CVMFS area for art packages (and its
dependencies)

• This has resulted in multiple installations of the same art versions (and
dependencies) across experiment CVMFS areas

• If the art/critic suites and its dependencies were available from a dedicated CVMFS
area, would the experiments see that as a benefit?

Potential art CVMFS area

3/3/20 art stakeholders meeting3

• There are two reasons why you may wish to specify the trigger_paths parameter in
your art job configuration:
– You wish to enable execution for a subset of the configured trigger paths
– You wish to specify the trigger bits

trigger_paths

3/3/20 art stakeholders meeting4

• There are two reasons why you may wish to specify the trigger_paths parameter in
your art job configuration:
– You wish to enable execution for a subset of the configured trigger paths
– You wish to specify the trigger bits

trigger_paths

3/3/20 art stakeholders meeting5

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # index 1
c: [m4, m5] # index 2

}

• There are two reasons why you may wish to specify the trigger_paths parameter in
your art job configuration:
– You wish to enable execution for a subset of the configured trigger paths
– You wish to specify the trigger bits

trigger_paths

3/3/20 art stakeholders meeting6

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # index 1
c: [m4, m5] # index 2

}

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # disabled
c: [m4, m5] # index 1
trigger_paths: [a, c]

}

• There are two reasons why you may wish to specify the trigger_paths parameter in
your art job configuration:
– You wish to enable execution for a subset of the configured trigger paths
– You wish to specify the trigger bits

trigger_paths

3/3/20 art stakeholders meeting7

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # index 1
c: [m4, m5] # index 2

}

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # disabled
c: [m4, m5] # index 1
trigger_paths: [a, c]

}

physics: {
... # Should be
a: [m1, m2] # index 1
b: [m1, m3] # disabled
c: [m4, m5] # index 0
trigger_paths: [c, a]

}

• There are two reasons why you may wish to specify the trigger_paths parameter in
your art job configuration:
– You wish to enable execution for a subset of the configured trigger paths
– You wish to specify the trigger bits

trigger_paths

3/3/20 art stakeholders meeting8

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # index 1
c: [m4, m5] # index 2

}

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # disabled
c: [m4, m5] # index 1
trigger_paths: [a, c]

}

physics: {
... # Actually is
a: [m1, m2] # index 0 L
b: [m1, m3] # disabled
c: [m4, m5] # index 1 L
trigger_paths: [c, a]

}

• There are two reasons why you may wish to specify the trigger_paths parameter in
your art job configuration:
– You wish to enable execution for a subset of the configured trigger paths
– You wish to specify the trigger bits

• We would like to fix the framework to reflect expected behavior.
• This could break current workflows. Is there a concern about this?

trigger_paths

3/3/20 art stakeholders meeting9

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # index 1
c: [m4, m5] # index 2

}

physics: {
...
a: [m1, m2] # index 0
b: [m1, m3] # disabled
c: [m4, m5] # index 1
trigger_paths: [a, c]

}

physics: {
... # Actually is
a: [m1, m2] # index 0 L
b: [m1, m3] # disabled
c: [m4, m5] # index 1 L
trigger_paths: [c, a]

}

• C++20 has been finalized.
– Draft International Standard out for ISO approval

• The 4 main core features:
– Concepts
– Coroutines
– Modules
– Ranges

• No specific plan as to when C++20-enabled builds of art would be available.

• Current compiler status for C++20 can be found:
– GCC: https://gcc.gnu.org/projects/cxx-status.html#cxx2a
– Clang: https://clang.llvm.org/cxx_status.html#cxx20

C++ features

3/3/20 art stakeholders meeting10

• STL additions:
– format library
– std::span
– std::source_location
– constexpr std::string/std::vector

https://gcc.gnu.org/projects/cxx-status.html
https://clang.llvm.org/cxx_status.html

